
The Ultimate
Contentful Guide
Here’s everything you need to know to get started with
Contentful and make your transition to this headless
CMS a success.

IN PARTNERSHIP WITH

HELLOBAYTREE.COM

2022

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

2 / 23

Introduction
Comparison with other CMSes
Architecture
GraphQL type generation
Most read articles
Performance
Image management
Conclusion & about Baytree

3
4

12
17
18
19
21
23

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

3 / 23

Introduction

Hi there!

We’re Baytree; a development studio that creates, manages and

maintains next generation products for our clients. Fundamental

to all our work is a belief in human centric design underpinned by

strategic business thinking and world class engineering. We’ve been

doing this for over 15 years. We’ve worked with Governments, SME’s,

multi-nationals and venture capital backed startups and have a huge

amount of experience and learning to share from our diverse client

roster.

We’ve put together this guide to help you learn some key points, tips

and tricks that’ll make your migration to Contentful a success.

We hope you gain useful insight from our substantial experience in

implementing mission-critical Contentful systems, including one of

the most highly trafficked news websites in the world.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

4 / 23

Comparison with other CMSes
If you’re coming from WordPress (or other legacy CMS), it’s important

to understand the pros and cons of headless CMSes before beginning

your technical planning.

Reduced operational/maintenance burden

One of the first reasons we’re such fans of Contentful is because it

significantly reduces required maintenance as compared to that of

traditional CMSes. Being cloud hosted; Contentful is responsible for

managing, securing and upgrading the CMS API endpoint and admin

interface.

Given the multitude of security issues and regular patching

requirements of legacy CMS systems (and their plugins), for many

developers this means once the site is launched you will have little to

no maintenance to do with Contentful.

Furthermore, you can also say goodbye to those hughley annoying

‘system upgrades’ that traditional CMSs often introduce; requiring you

to update your themes, logic and plugins with no option to remain on

a previous version that was working just fine. Everything this happens,

you have to take another close look at your platform architecture and

security.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

5 / 23

By moving to Contentful, this pain and work burden is removed. This

has been an enormous cost saving for our clients - often freeing

up multiple FTE developers and operational staff for other more

important tasks.

KEY TAKEAWAY

Expect significantly lower
development and operational
expenditure with a headless CMS vs
legacy CMS. And here’s some good
news — the bigger your platform is,
the bigger benefits you can expect
when you switch to a headless CMS.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

6 / 23

CMS modifications — be aware that…

In general, it is more difficult to modify the ‘admin interface’ of

Contentful than that of a legacy CMS. This is because Contentful

hosts a standardised version for all customers; unlike WordPress

where everyone has their own install. This allows significant benefits;

but can be a hindrance if you are used to being able to make

significant changes to the interface’s look and feel.

Many customisations can still be performed via ‘Contentful apps’,

small (or large) plugins you host yourself, and, webhooks and

Contentful APIs. However, this doesn’t tend to go as far as wholesale

changes to the UI interface itself which may be possible with other

legacy CMSes. In our experience, this isn’t required often, and indeed

can be a positive in so much that the Contentful admin interfaces

tend to be very similar — reducing staff training time and cost as you

roll the product out throughout your organisation.

KEY TAKEAWAY

Think carefully about the level of
customisation you need with your
admin interface. Speak with key
stakeholders to discover if the out of
the box experience of the Contentful
admin UI works before starting
development.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

7 / 23

Decoupling of frontend from backend

Covered in more detail in the architecture section of this guide, one

of the key benefits of Contentful and a headless CMS is being able to

decouple the front end from the back end.

This offers many benefits. Typically, in WordPress, you’d have to use

PHP based templating and business logic, which may not be a stack

your development or operation team has much fluency in. With

Contentful, you can use the technology stack you are most familiar

with and have most experience with.

This makes it a lot easier to integrate with other systems (booking

engines, CRMs, user authentication) as you can reuse a lot of your

existing code and the libraries you use to interface with those

systems.. There’s no need, to write specialised code for your CMS-

driven website, which, in our experience, leads to a website’s UX

being compromised and key business logic being moved to other

subdomains/web apps. With a headless CMS such as Contentful, this

becomes far less of a concern.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

8 / 23

This does require a slight change in mindset for your development

tea, who may be used to querying databases directly. With a headless

CMS, all your data access will be performed via HTTP REST or

GraphQL calls, which tends to force a more rigorous approach in

accessing key data.

KEY TAKEAWAY

With a headless CMS you can expect
to be able to reuse much more of
your teams’ previous experience and
code.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

9 / 23

Designed for multiple platforms (not just web!)

Given its dominance for the last 20+ years, most legacy CMSes are

heavily web-oriented and assume that the content you input will be

displayed on the web. This was once a fair assumption, but over the

past decade it has become increasingly incorrect and a hidernace.

A simple example is how WordPress deals with rich text editing:

This approach works great for websites - simple and effective.

But typically, legacy CMSs using this approach require your mobile

applications to be littered with webviews to display rich text (as the

CMS assumes it can render HTML), which significantly compromises

performance and user experience of your application.

Users edits/inserts rich text

WordPress store it as HTML

Your frontend displays storeed HTML

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

10 / 23

Contentful works differently, using this approach:

This process has major benefits in a multiplatform world. Instead of

assuming the client will be able to render HTML, it stores the data in

an intermediate node format. The client then retrieves this data, and

transforms it into the right format for the platform it is on.

Users edits rich text

Contenful stores as a graph of nodes

Web: transforms
nodes intro HTML

iOS application:
transforms nodes into

NSAtributedString

Android application:
transforms nodes into

native view

Smart TV
application: renders

native UI

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

11 / 23

While this sounds more complicated, in reality, there are many well

tested and easy to use libraries that perform this transformation in

often what is one line of code e.g.

Web/HTML: https://github.com/contentful/rich-text/tree/master/

packages/rich-text-html-renderer

React/React Native: https://github.com/contentful/rich-text/tree/

master/packages/rich-text-react-renderer

iOS: https://github.com/contentful/rich-text-renderer.swift

Android: https://github.com/contentful/rich-text-renderer-java

Contentful gives you an enormous amount of flexibility and helps

future proof your content. And most importantly, it’s easy to perform!

KEY TAKEAWAYS

Contentful offers far more flexibility
in how it renders content, which is
essential when you’re deploying code
across more than one platform. You
can leverage tried and tested and
high performing libraries that are
available for handling the transform
to your clients’ environment.

http://hellobaytree.com
https://github.com/contentful/rich-text/tree/master/packages/rich-text-html-renderer
https://github.com/contentful/rich-text/tree/master/packages/rich-text-html-renderer
https://github.com/contentful/rich-text/tree/master/packages/rich-text-react-renderer
https://github.com/contentful/rich-text/tree/master/packages/rich-text-react-renderer
https://github.com/contentful/rich-text-renderer.swift
https://github.com/contentful/rich-text-renderer-java

CONTENTFUL 12 / 23

Architecture
The key to a good Contentful build is choosing the right architecture

from the start. Here are top areas of consideration.

Choose how you will render pages

As Contentful is a headless CMS, it gives you significantly more

flexibility in how you render your pages.

With a legacy CMS, you’d use server side rendering and your CMS

templating engine to build the pages. With Contentful, you have more

option:

Server side generation

In this approach, you have a web server running an application that

renders pages. This application takes queries from your users, calls

Contentful (via REST or GraphQL), and renders the pages, and serves

them back to your users.

User request Web application Contenful

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

13 / 23

For most use cases this will be the preferred starting point. Why? Our

main considerations are:

Page load speed: Generally, this allows for the fastest possible

page load speed, as the server compiles the page and serves to one

user in one go, without requiring the JavaScript VM on the client to

initialise and request content. This has allowed us to serve pages

from Contentful in less than 50ms. For SEO and user experience, fast

page loads are critical.

Crawlability: As the page is provided ‘complete’, search engines can

crawl the content easily.

Flexibility: This approach allows you to do complex transforms and

joining of data — including other third party data sources. These tend

to get extremely complicated to do securely on the client side.

Reduction of client side code complexity: This may or may not be a

benefit depending on your use case but, in general server side pages

are simpler to test and automate than client side state.

If these are less important to you (for example, a private intranet site),

this may not be as essential.

Achieving this design is simple - you can leverage your previous web

framework (ASP.NET, Django, Ruby on Rails, etc), but instead of calling

data from a database, you call it via GraphQL to Contentful.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

14 / 23

Pure client side rendering

This is a newer approach made possible by the way headless CMSes

are architected. Here your client side code calls Contentful directly,

with no web server in between.

This has significant benefits in itself:

One application: You only have one set of client side code to worry

about, with no server side server to run.

Easy deployment: As your application is essentially a static collection

of files, it can be hosted easily on static hosts, such as S3, Azure Blob,

GCP Storage or Netifly.

More UI flexibility: If you require a lot of UI interaction that is

not well suited to server side rendering, this may be an important

consideration, However, please bear in mind the page load and

crawlability drawbacks of this approach. We have been involved in

many projects which started with this architecture but had to revert

to server side rendering or the hybrid approach outlined below as the

hit to SEO scores was too great.

User request Contenful

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

15 / 23

Hybrid

For more complex applications, this is generally the correct approach.

It can be achieved one of two ways. The first approach is with a

framework using a ‘hydration’ approach (frameworks like NextJS

handle this well), where a server prerenders your client side code into

static pages automatically. This can be a great way to get the benefits

of both worlds; but bear in mind if you are displaying external (non-

CMS) datasets this can still get very complicated and can require a lot

of custom code to call it in a secure way.

The other approach is to have most pages be server side generated,

but for areas which require more interaction, embed the client side

approach (for example, a React application).

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

16 / 23

Conclusion

Getting this right at the start of your project is extremely important.

We’ve tried to summarise the key considerations in this flowchart:

Do you requiere good
SEO crawlability?

Server side rendering (can
move to hybrid later) Hybrid Client

side

Do you need complex
UI interaction?

Do you need to
interact with external

datasources?

YES

YES

YES

NO

NONO

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

17 / 23

GraphQL type generation
If you’re using a statically typed language (C#, Java, Typescript, etc),

you’ll want to generate type definitions for use in your application.

This allows a multitude of benefits for your development team.

They’ll get context aware code completion in their IDE or text editor,

allowing them to discover the structure of the content quickly. Plus

your compiler will quickly stop any invalid operations or data access

without requiring further tests.

The key part is to use the get-graphql-schema2 NPM package to

download your schema:

get-graphql-schema https://graphql.contentful.com/

content/v1/spaces/{SPACE}/environments/{ENVIROMENT}

-h Authorization=“Bearer {APIKEY}” > schema.graphql

•	 Where SPACE is your space ID

•	 ENVIRONMENT is your environment (typically staging or master)

•	 APIKEY is your Delivery API Key

This will generate a GraphQL type definition file. This can then be

uploaded to https://www.graphql-code-generator.com/ imported and

exported for your programming environment (which you can select in

the dropdown).

You’ll get a type file you can include in your project. This will make

interacting with Contentful vastly easier.

http://hellobaytree.com
https://www.graphql-code-generator.com/

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

18 / 23

Furthermore, this can be further automated. Check out the graphql-

codegen library: https://github.com/dotansimha/graphql-code-

generator. With this, you could integrate this as part of your CI/CD

pipeline to ensure the types are always up to date; and fail your

deployment if it is running on outdated definitions.

Most read articles
One area many projects get stuck on is implementing most read. For

low traffic sites, you can simply add an integer field to your content

model and increment it when you pull the content down.

However, for high traffic sites this doesn’t work well. It consumes a lot

of GraphQL non-CDN API calls, which can get expensive. Even worse

it means every page load invalidates your CDN cache, which can

cause major performance issues.

We typically implement this with a separate simple database (Azure

table storage, DynamoDB, even Postgres). Store each page load as a

row, with the datetime and Contentful ID of the page.

You can then use an ajax (to improve cachability of the main page)

request on page load to a simple endpoint that can manage this logic.

When you want to rank items by most read, call both Contentful and

this table storage, and perform a simple query on it to transform and

sort by most read.

http://hellobaytree.com
https://github.com/dotansimha/graphql-code-generator
https://github.com/dotansimha/graphql-code-generator

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

19 / 23

Performance

Caching strategies

If you’re running a high load site and using server side rendering

(>100requests/second), we recommend a cache “in depth” strategy. We’d

also recommend putting the site behind a CDN, such as Cloudflare or

Imperva, with the correct cache-control headers set on your webpages.

This will significantly reduce the amount of traffic to your application

servers. Furthermore, Contentful also caches your GraphQL responses,

so you have in effect two caches working in tandem.

This is less of an issue with client side rendering as Contentful will

handle all the caching for you.

Everything public (and personal via JS)

A great tip for high load sites that use server side rendering is to try

and keep everything cachable — but then alter the site via AJAX to

personalise. For example, if you have a login button on your homepage

you want to customise, instead of doing so on the server side, you can

have the profile information come via Javascript which then changes the

‘login’ button to ‘my account’.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

20 / 23

Depending on how much of the homepage is customised, this may or

may not be a worthwhile strategy.

However, if it is a small amount, it means all page loads will be

cached, with just a small load from the personalisation data that is

required, as opposed to not caching these pages at all as they have

PII on them.

GraphQL CDN doesn’t count towards API rate
limits

An often overlooked fact is that when you are calling the GraphQL

endpoint, only requests which miss the CDN cache are counted

towards your rate limits (which can be quite limiting, at 55/sec). This

gives more flexibility but requires some thought to not invalidate the

cache by modifying entities too frequently (eg every page load). See

the most read section for an example of how to deal with this.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

21 / 23

Image management
Contentful has great image management features that work like you’d

expect. If you are dealing with a design that requires images in various

aspect ratios in different places there are a couple of features which

you may find extremely useful to achieve this (without requiring your

authors to upload various combinations of those images).

Contentful image API

The Contentful image API has a great AI feature which can detect

faces and crop the image intelligently. If you’re using the contentful

image API you can simply add the following:

•	 face for the largest face detected.

•	 faces for all the faces detected.

For many use cases this is simple and works effectively.

http://hellobaytree.com

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

22 / 23

Image focal points

If you require further control; or your image tend not to have people

in them, you can use the image focal point editor app by Contentful

(https://www.contentful.com/help/image-focal-point-app/)

This allows your authors to set the focus of their images and see a

preview of various aspect ratios, giving them great control.

An important point: at time of writing, the Contentful image API

doesn’t support taking the data from this to crop. As such, you will

either need to crop on the frontend with this focal point data, or use

a 3rd party service such as imgix which does support this data.

http://hellobaytree.com
https://www.contentful.com/help/image-focal-point-app/

CONTENTFUL

h
el

lo
b
ay

tr
ee

.c
om

23 / 23

Conclusion & about Baytree
We hope you enjoyed this guide to Contentful. Baytree is a leading

solution provider for Contentful consultancy and software builds, and

we would love to hear from you if you think we can help accelerate

your migration to the exciting world of headless CMSes.

Contact us at toma@hellobaytree.com

http://hellobaytree.com
mailto:toma%40hellobaytree.com?subject=

